AC Variable Speed Drives For HVAC Applications

The drive for perfection
The IMO Jaguar VXH range can make a significant reduction in global energy usage

Up to 50% of energy consumption in schools, hospitals, shopping centres, hotels and office buildings is related to air conditioning. The IMO Jaguar VXH series is a dedicated inverter for HVAC applications that offers functions and features designed to create the optimal environment for the people using the building whilst keeping the energy consumption in AHUs, water pumps, compressors, condensers, and others to a minimum.

Equally at home as part of a BMS system or as a standalone solution the IMO Jaguar VXH range has been designed specifically for energy saving and can significantly help to reduce our Global Carbon Footprint.

Wide range from 0.75kW to 710kW

All drives up to 90kW have integral EMC filter and DCR as standard and are available as IP21 or IP55, thus offering a wide range of installation options.

<table>
<thead>
<tr>
<th>Inverter capacity</th>
<th>EMC Filter</th>
<th>DC reactor</th>
<th>Protective structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75kW to 90kW</td>
<td>Built-in</td>
<td>Built-in</td>
<td>IP21/IP55</td>
</tr>
<tr>
<td>110kW to 710kW</td>
<td>Built-in</td>
<td>External</td>
<td>IP00</td>
</tr>
</tbody>
</table>

Optimised control with energy saving

- Linearization function
- Temperature based control and pressure based control
- Energy saving functions including wet-bulb temperature estimation control
- Automatic energy saving operation

Slim body

The slim body design and uniform frame size of the IP21 and IP55 variants enables installation in compact spaces?

Specific HVAC functions

- 4 built in PID controllers
- Pick-up rotating motor function
- Torque vector control
- Programmable Logic Controller
- Password function
- Cumulative kWh data logger
- Fire mode (forced operation)
- Real time clock / Timer functions
- Filter clogging prevention function
- User friendly, informative keypad
- Broken belt detection

Peace of mind

The IMO Jaguar VXH range has a 10 year design life, backed by our unique 5 Year Warranty.
Optimum Control for HVAC Applications

Air Handling Unit (AHU) Supply fan / Return fan

The speed of supply and return fans can be adjusted to optimise performance according to pressure, discharge temperatures, room temperature, or other environmental conditions.

The highest level of energy efficiency can be achieved by controlling the air flow based on the carbon dioxide level in the room.

Chilled water pump

The chilled water pump circulates the chilled water generated by the freezing machine to the air conditioner and fan coil. The pump speed is adjusted to optimum performance according to the header pressure.

In addition, the pump pressure can be controlled to the correct value by correlating the flow rate signal with the target pressure using the linearization function.

Cooling water pump

The cooling water pump circulates the cooling water to the cooling tower in order to cool the heat generated by the freezing machine. The pump speed is adjusted to attain its optimum performance, according to the temperature and flow rate of the cooling water.

In addition, the inverter can control the cooling pump so that the difference of cooling water temperature between the inlet and outlet is always constant. (Temperature difference constant control).

Cooling tower fan

The cooling tower fan is used to cool the cooling water by emitting it into the air. The fan speed is optimised according to the cooling water temperature at the outlet.

To further improve energy efficiency, the inverter estimates the wet-bulb temperature automatically to control the fan so that the temperature of cooling water (wet bulb) is interlocked to the air temperature. (Wet-bulb temperature estimation control).
User friendly, easy to see keypad

The following values can be shown on the enlarged LCD display

2. Set value (SV) 6. Output voltage 10. Cumulative energy
3. Manipulate value (MV) 7. Torque
4. Frequency 8. Rotation speed

*User defined process value display options

Multi-language function: 19 languages + user customized language

Real time clock (RTC) is provided as standard

Alarm function:
- Alarm information with date and time
- Previous 10 alarms are stored and displayed with date and time

Timer function:
- Ability to set up to four timers per week
- Ability to set up to 20 holidays per year
- Daylight saving feature

Example:
The operational schedule can be set using four independent timers when operation requirement varies depending on the day of the week.

Unit conversion function between PV and SV values
- Unit conversion allows you to easily set data

<table>
<thead>
<tr>
<th>Function</th>
<th>No conversion</th>
<th>%</th>
<th>RPM</th>
<th>l/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit conversion</td>
<td>m³/h</td>
<td>C</td>
<td>mbar</td>
<td>bar</td>
</tr>
<tr>
<td></td>
<td>kPa</td>
<td>mWG</td>
<td>mmHg</td>
<td>kW</td>
</tr>
<tr>
<td></td>
<td>in-wg</td>
<td>psi</td>
<td>F</td>
<td>ppm</td>
</tr>
<tr>
<td></td>
<td>PSI</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. **User-friendly, easy to see dedicated keypad**
 Multi-language supported, HELP function featured, unit setting with SV and PV values, data copy (three kinds), detachable and can be attached on the panel (using an optional cable).

2. **Control board**
 USB port equipped. Max. three types of built-in optional boards can be mounted at the same time. Optional battery connection for RTC. Various communications option functions.

3. **Control terminal block**
 A detachable control terminal block is used. This allows the control PCB to be replaced easily without disconnecting cables.

4. **Capacitor board**
 Outputs the life prediction signal determining capacitor level drop and cumulative running hours. This allows the user to determine replacement period.

5. **Cooling fan**
 Easy replacement just by simply removing and attaching the part. Life expectancy can be increased by controlling ON and OFF.

6. **EMC filter**
 Effectively reduces noise. Integral to units of all capacities. Conforming to IEC61800-3.

7. **DCR**
 Effectively reduces harmonic noise. Conforming to IEC/EN61000-3-2 and IEC/EN61000-3-12. Provided as standard (models up to 90kW), and can be attached externally as an option (to models from 110kW to 710kW).

8. **Environmental immunity**
 3C2, IEC60721-3-3 supported

9. **Others**
 Support/analysis software by loader, RTC backup by battery (option)

Standard equipment
<table>
<thead>
<tr>
<th>Name</th>
<th>Optional Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACnet MS/TP</td>
<td>LonWorks</td>
</tr>
<tr>
<td>Modbus RTU</td>
<td>Ethernet</td>
</tr>
<tr>
<td>Metasys N2</td>
<td>Profibus</td>
</tr>
</tbody>
</table>

Optional Equipment
<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>LonWorks</td>
</tr>
<tr>
<td>DeviceNet</td>
</tr>
<tr>
<td>Ethernet</td>
</tr>
<tr>
<td>CANopen</td>
</tr>
<tr>
<td>Profibus</td>
</tr>
<tr>
<td>CC-Link</td>
</tr>
</tbody>
</table>

Series name: VXH

Inverter output current:

Input power supply: 4:400V

Protection structure: M:IP21 L:IP55
Specific HVAC Functions

Linearization function

This function estimates the target pressure using the flow rate, which allows the estimated terminal pressure to be controlled.

For an air-conditioning heat source system, the quantity of the cooling or heating water required fluctuates due to outside temperature or day/night requirements. Therefore, maintaining a constant water pressure may lead to unnecessarily high pressures on terminals at a low operating state and wasted energy at the pump.

By controlling the pump, using a correlation of required pressure and the estimated terminal pressure, using the detected load flow rate through the PID controller, it is possible to reduce the wasted pump power to achieve a greater energy-saving effect.
Wet-bulb temperature estimation control

This function is used for controlling cooling tower and fans.

The wet-bulb temperature could be higher than the set temperature if the external air temperature is too high. In this case the water temperature would not be able to reach the set temperature so the fan keeps rotating at high speed and fails to deliver energy savings.

Jaguar-VXH automatically estimates the wet-bulb temperature and controls the fan so that the cooling water is interlocked with the air temperature so as not to use unnecessary energy.

Filter clogging prevention function

This function detects clogging of the fan filter by monitoring output current and pressure sensor value.

When clogging is detected, the fan is rotated in reverse to eject dust before continuing its normal operation. An alarm output signals maintenance is required.

Programmable logic control

The customized logic interface enables the user to apply logic and arithmetic functions to the digital and analogue input and output signals, allowing simple relay sequences to be built to process the signals.

4 PID controllers

The inverter is equipped with 4 PID controllers as standard. One PID module is used to control the output frequency of the inverter, the other three can be used to control external devices. To utilize all of four PIDs the optional card (0PC-G1-A10) is required.

Fire mode (forced operation)

In this mode the inverter will continue operating the fan or pump for as long as possible in case of an emergency. All of the inverter protection functions are ignored and operation continues until failure.

Password

Passwords can be set to restrict unauthorised users and protect against improper use. Entering the incorrect password repeatedly will lock the drive for security.

Pick-up operation function

The pick-up function enables the inverter to match the output frequency to a rotating motor regardless of the direction of rotation, and pick up the motion smoothly. This function is particularly useful when switching the motor directly from mains operation to inverter operation.
Standard Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>VXH#**-4E</td>
</tr>
<tr>
<td>Applicable standard motor (rated output) [kW]</td>
<td>0.75 1.5 2.2 4.0 5.5 7.5 11 15 18.5 22 30 37 45 55</td>
</tr>
<tr>
<td>Rated capacity [kVA]</td>
<td>1.9 3.1 4.1 6.8 10 14 18 24 29 34 45 57 69 85</td>
</tr>
<tr>
<td>VXH#</td>
<td>2A5 4A1 5A5 9 13A5 18A5 24A5 32 39 45 60 75 91 112</td>
</tr>
<tr>
<td>Voltage [V]</td>
<td>3-phase, 380 to 480V (with AVR function)</td>
</tr>
<tr>
<td>Rated current [A]</td>
<td>2.5 4.1 5.5 9.0 13.5 18.5 24.5 32 39 45 60 75 91 112</td>
</tr>
<tr>
<td>Overload current rating</td>
<td>110%-1min (Overload tolerated interval: compliant with IEC 61800-2)</td>
</tr>
<tr>
<td>Rated frequency [Hz]</td>
<td>50, 60Hz</td>
</tr>
<tr>
<td>Main power supply (No. of phase, voltage, frequency)</td>
<td>3-phase, 380 to 480V, 50/60Hz</td>
</tr>
<tr>
<td>Voltage, frequency variations</td>
<td>Voltage: +10 to -15% (Unbalance rate between phases is with 2%) Frequency: +5 to -5%</td>
</tr>
<tr>
<td>Rated input current [A]</td>
<td>1.6 3.0 4.3 7.4 10.3 13.9 20.7 27.9 34.5 41.1 55.7 69.4 83.1 102</td>
</tr>
<tr>
<td>Required power supply capacity [kVA]</td>
<td>1.2 2.1 3.0 5.2 7.2 9.7 15 20 24 29 39 49 57 71</td>
</tr>
<tr>
<td>Braking torque [%]</td>
<td>10 to 15</td>
</tr>
<tr>
<td>Braking starting frequency</td>
<td>0.0 to 60.0Hz</td>
</tr>
<tr>
<td>Braking time</td>
<td>0.0 to 30.0s</td>
</tr>
<tr>
<td>Braking level</td>
<td>0 to 60%</td>
</tr>
<tr>
<td>Cooling method</td>
<td>Natural cooling</td>
</tr>
<tr>
<td>Weight/ Mass</td>
<td>IP21/IP55</td>
</tr>
</tbody>
</table>

1) Applicable standard motors are the case for IMO 4-pole standard motors
2) The rated capacity indicates the case of 440V ratings
3) Output voltage cannot exceed the power supply voltage
4) Interphase voltage unbalance ratio [%] = (max. voltage [V] - min. voltage [V]) / 3 phase average voltage [V] x 67 (see IEC61800-3). When unbalance ratio is between 2 - 3% please use optional AC reactor (ACR).
5) Average braking torque obtained by use of a motor. 9Varies with the efficiency of the motor)
Outline drawing

<table>
<thead>
<tr>
<th>Power supply voltage</th>
<th>Applicable standard motor (kW)</th>
<th>Inverter model</th>
<th>Outside dimensions (mm)</th>
<th>Mounting dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Drawing W H D D1 D2</td>
<td>Drawing W1 W2 H1 H2</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>VXH2A5#-4E</td>
<td>A 150 465 262 162 100</td>
<td>115 17.5 451</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>VXH4A1#-4E</td>
<td>A 203 585 262 162 100</td>
<td>158 22.5 571</td>
</tr>
<tr>
<td>3-phase 400V</td>
<td>2.2</td>
<td>VXH5A5#-4E</td>
<td>A 265 738 284 184.5 99.5</td>
<td>180 42.5 716 12</td>
</tr>
<tr>
<td></td>
<td>3.7</td>
<td>VXH9#-4E</td>
<td>A 300 885 370 240.8 127.1</td>
<td>215 855 15.5</td>
</tr>
<tr>
<td></td>
<td>5.5</td>
<td>VXH13A5#-4E</td>
<td>A 530 740 315 135</td>
<td>430 710</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>VXH18A5#-4E</td>
<td>A 680 1400 440 260</td>
<td>290 1370</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>VXH24A5#-4E</td>
<td>A 1000 1550 500 313.2 186.8</td>
<td>300 49.5 1520</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>VXH32#-4E</td>
<td>A 800 203 585 262 162 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18.5</td>
<td>VXH39#-4E</td>
<td>A 150 465 262 162 100</td>
<td>115 17.5 451</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>VXH45#-4E</td>
<td>A 203 585 262 162 100</td>
<td>158 22.5 571</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>VXH60#-4E</td>
<td>A 265 738 284 184.5 99.5</td>
<td>180 42.5 716 12</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>VXH75#-4E</td>
<td>A 300 885 370 240.8 127.1</td>
<td>215 855 15.5</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>VXH91#-4E</td>
<td>A 530 740 315 135</td>
<td>430 710</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>VXH112#-4E</td>
<td>A 680 1400 440 260</td>
<td>290 1370</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>VXH150#-4E</td>
<td>A 1000 1550 500 313.2 186.8</td>
<td>300 49.5 1520</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>VXH176#-4E</td>
<td>A 800 203 585 262 162 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>VXH210S-4E</td>
<td>A 150 465 262 162 100</td>
<td>115 17.5 451</td>
</tr>
<tr>
<td></td>
<td>132</td>
<td>VXH253S-4E</td>
<td>A 203 585 262 162 100</td>
<td>158 22.5 571</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>VXH304S-4E</td>
<td>A 265 738 284 184.5 99.5</td>
<td>180 42.5 716 12</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>VXH377S-4E</td>
<td>A 300 885 370 240.8 127.1</td>
<td>215 855 15.5</td>
</tr>
<tr>
<td></td>
<td>220</td>
<td>VXH415S-4E</td>
<td>A 530 740 315 135</td>
<td>430 710</td>
</tr>
<tr>
<td></td>
<td>280</td>
<td>VXH520S-4E</td>
<td>A 680 1400 440 260</td>
<td>290 1370</td>
</tr>
<tr>
<td></td>
<td>315</td>
<td>VXH585S-4E</td>
<td>A 1000 1550 500 313.2 186.8</td>
<td>300 49.5 1520</td>
</tr>
<tr>
<td></td>
<td>355</td>
<td>VXH650S-4E</td>
<td>A 800 203 585 262 162 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>VXH740S-4E</td>
<td>A 150 465 262 162 100</td>
<td>115 17.5 451</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>VXH900S-4E</td>
<td>A 203 585 262 162 100</td>
<td>158 22.5 571</td>
</tr>
<tr>
<td></td>
<td>630</td>
<td>VXH1170S-4E</td>
<td>A 265 738 284 184.5 99.5</td>
<td>180 42.5 716 12</td>
</tr>
<tr>
<td></td>
<td>710</td>
<td>VXH1370S-4E</td>
<td>A 300 885 370 240.8 127.1</td>
<td>215 855 15.5</td>
</tr>
</tbody>
</table>

(Protective structure) : M: IP21, L: IP55
S (Protective structure) : IP00

Body

![Body Diagram](image1.png)

Keypad

![Keypad Diagram](image2.png)
Outline drawing

Basic configuration diagram
(Factory shipped condition: with SOURCE mode input and enable input function)
Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay output interface card</td>
<td>OPC-G1-RY</td>
</tr>
<tr>
<td>Relay output interface card</td>
<td>OPC-G1-RY2</td>
</tr>
<tr>
<td>Analogue input interface card</td>
<td>OPC-G1-AI0</td>
</tr>
<tr>
<td>Analogue current output interface card</td>
<td>OPC-G1-AO</td>
</tr>
<tr>
<td>CC-Link communications card</td>
<td>OPC-G1-CCL</td>
</tr>
<tr>
<td>DeviceNet communications card</td>
<td>OPC-G1-DEV</td>
</tr>
<tr>
<td>PROFINet DP communications card</td>
<td>OPC-G1-PDP</td>
</tr>
<tr>
<td>CANopen communications card</td>
<td>OPC-G1-COP</td>
</tr>
<tr>
<td>LonWorks communications card</td>
<td>OPC-G1-LNW</td>
</tr>
<tr>
<td>Ethernet communications card</td>
<td>OPC-G1-ETH</td>
</tr>
<tr>
<td>PT100 temperature sensor input card</td>
<td>OPC-G1-PT</td>
</tr>
<tr>
<td>Battery</td>
<td>OPK-BP</td>
</tr>
</tbody>
</table>

From our market leading CUB, VXR, VXG, VXH and VXA range of drives with varying functionality and power, IMO has the right frequency inverter to meet the needs of your application, whatever it might be. From a simple small pump or fan through to the most complex large scale hoists, you can be assured that IMO has the drive and the knowledge to meet your application needs.

The IMO CUB features a full range of functions, a compact body, simple operation, wide model variations and global compatibility. It will meet the needs of higher performance machines and equipment such as conveyors, fans, pumps, centrifugal separators and food processing machines, as well as the needs of system integration, energy saving, labour saving and total cost reduction.

With an extended range of functions, the IMO VXR features connectivity, compact body, wide model variations and global compatibility. The VXR with Dynamic Torque Vector Control sets new standards for vector controlled drives. It will meet the needs of high performance machines and equipment such as pumps, fans, conveyors, material handling machines, packaging, special machines and textile machines.

The Building Services specific VXH drive has been designed with energy saving in mind. It is equally at home as part of a BMS system with its many inputs and outputs, or as a stand-alone solution with its 4 PID controllers, PLC and real time clock functions.

The VXA or AQUA drive has been designed to suit the demands of the water industry, including application specific functions cascading pump control, anti jam and dry pump detection.

The high performance VXG, multi function inverter boasts state-of-the-art technology, with control performance that has evolved to a new dimension. Control methods now include: PG Vector control, sensorless vector control, dynamic torque vector control and V/F Control. It meets the needs of the most demanding drives applications such as hoisting, packaging, material handling, wood, textile and process machinery.

Providing the highest performance levels in the industry and redefining the common sense of general purpose inverters, the IMO Jaguar range is ready to answer your needs.
IMO Worldwide Offices

IMO Precision Controls Limited
1000 North Circular Road
Staples Corner
London NW2 7JP
United Kingdom
Tel: 020 8452 6444
Fax: 020 8450 2274
Email: imoc@imopc.com
Web: www.imopc.com

IMO South Africa (Pty) Ltd
G16 Centurion Business Park
Montague Gardens
Cape Town 7441
South Africa
Tel: 021 551 1787
Fax: 021 555 0676
Email: info@imopc.co.za
Web: www.imopc.co.za

IMO South Pacific Pty Ltd
1/6 Dillington Pass
Landsdale
Perth WA 6065
Australia
Tel: 08 9302 5246 (local)
Fax: 08 9303 9908
Email: sales@imopacific.com.au
Web: www.imopacific.com.au

IMO Jeambrun Automation SAS
Centre D’Affaires Rocroy
30, Rue de Rocroy
94100 Saint-Maur-Des-Fosses
France
Tel: 0800 912 712 (n° gratuit)
Fax: 0145 134 737
Email: imo-fr@imopc.com
Web: www.imojeambrun.fr

IMO Canada
Unit 32 - B - North
18 Stratheam Avenue, Brampton
Ontario L6T 4Y2
Canada
Tel: 905 799 9237 (local)
Fax: 905 799 0450
Email: imo-ca@imopc.com
Web: www.imopc.com

IMO North Pacific Pty Ltd
101 Colony Park Drive, Suite 300
Cumming
Georgia 30040
USA
Tel: 404 476 8810
Fax: 404 476 8811
Email: imo-usa@imopc.com
Web: www.imoautomation.com

IMO Automazione
Via Ponte alle Mosse, 61
50144 Firenze (FI)
Italia
Tel: 800 930 872 (toll free)
Fax: 8000 452 6445
Email: imo-it@imopc.com
Web: www.imopc.it

IMO Automation LLC
101 Colony Park Drive, Suite 300
Cumming
Georgia 30040
USA
Tel: 404 476 8810
Fax: 404 476 8811
Email: imo-usa@imopc.com
Web: www.imoautomation.com

IMO Jeambrun Automation SAS
Centre D’Affaires Rocroy
30, Rue de Rocroy
94100 Saint-Maur-Des-Fosses
France
Tel: 0800 912 712 (n° gratuit)
Fax: 0145 134 737
Email: imo-fr@imopc.com
Web: www.imojeambrun.fr

IMO Canada
Unit 32 - B - North
18 Stratheam Avenue, Brampton
Ontario L6T 4Y2
Canada
Tel: 905 799 9237 (local)
Fax: 905 799 0450
Email: imo-ca@imopc.com
Web: www.imopc.com

IMO North Pacific Pty Ltd
101 Colony Park Drive, Suite 300
Cumming
Georgia 30040
USA
Tel: 404 476 8810
Fax: 404 476 8811
Email: imo-usa@imopc.com
Web: www.imoautomation.com

IMO Automazione
Via Ponte alle Mosse, 61
50144 Firenze (FI)
Italia
Tel: 800 930 872 (toll free)
Fax: 8000 452 6445
Email: imo-it@imopc.com
Web: www.imopc.it

IMO Automation LLC
101 Colony Park Drive, Suite 300
Cumming
Georgia 30040
USA
Tel: 404 476 8810
Fax: 404 476 8811
Email: imo-usa@imopc.com
Web: www.imoautomation.com

IMO South Pacific Pty Ltd
1/6 Dillington Pass
Landsdale
Perth WA 6065
Australia
Tel: 08 9302 5246 (local)
Fax: 08 9303 9908
Email: sales@imopacific.com.au
Web: www.imopacific.com.au

IMO Canada
Unit 32 - B - North
18 Stratheam Avenue, Brampton
Ontario L6T 4Y2
Canada
Tel: 905 799 9237 (local)
Fax: 905 799 0450
Email: imo-ca@imopc.com
Web: www.imopc.com

IMO North Pacific Pty Ltd
101 Colony Park Drive, Suite 300
Cumming
Georgia 30040
USA
Tel: 404 476 8810
Fax: 404 476 8811
Email: imo-usa@imopc.com
Web: www.imoautomation.com

IMO Automazione
Via Ponte alle Mosse, 61
50144 Firenze (FI)
Italia
Tel: 800 930 872 (toll free)
Fax: 8000 452 6445
Email: imo-it@imopc.com
Web: www.imopc.it

IMO Automation LLC
101 Colony Park Drive, Suite 300
Cumming
Georgia 30040
USA
Tel: 404 476 8810
Fax: 404 476 8811
Email: imo-usa@imopc.com
Web: www.imoautomation.com

IMO South Pacific Pty Ltd
1/6 Dillington Pass
Landsdale
Perth WA 6065
Australia
Tel: 08 9302 5246 (local)
Fax: 08 9303 9908
Email: sales@imopacific.com.au
Web: www.imopacific.com.au

IMO Canada
Unit 32 - B - North
18 Stratheam Avenue, Brampton
Ontario L6T 4Y2
Canada
Tel: 905 799 9237 (local)
Fax: 905 799 0450
Email: imo-ca@imopc.com
Web: www.imopc.com

IMO North Pacific Pty Ltd
101 Colony Park Drive, Suite 300
Cumming
Georgia 30040
USA
Tel: 404 476 8810
Fax: 404 476 8811
Email: imo-usa@imopc.com
Web: www.imoautomation.com

IMO Automazione
Via Ponte alle Mosse, 61
50144 Firenze (FI)
Italia
Tel: 800 930 872 (toll free)
Fax: 8000 452 6445
Email: imo-it@imopc.com
Web: www.imopc.it

IMO Automation LLC
101 Colony Park Drive, Suite 300
Cumming
Georgia 30040
USA
Tel: 404 476 8810
Fax: 404 476 8811
Email: imo-usa@imopc.com
Web: www.imoautomation.com

IMO South Pacific Pty Ltd
1/6 Dillington Pass
Landsdale
Perth WA 6065
Australia
Tel: 08 9302 5246 (local)
Fax: 08 9303 9908
Email: sales@imopacific.com.au
Web: www.imopacific.com.au

IMO Canada
Unit 32 - B - North
18 Stratheam Avenue, Brampton
Ontario L6T 4Y2
Canada
Tel: 905 799 9237 (local)
Fax: 905 799 0450
Email: imo-ca@imopc.com
Web: www.imopc.com

IMO North Pacific Pty Ltd
101 Colony Park Drive, Suite 300
Cumming
Georgia 30040
USA
Tel: 404 476 8810
Fax: 404 476 8811
Email: imo-usa@imopc.com
Web: www.imoautomation.com

IMO Automazione
Via Ponte alle Mosse, 61
50144 Firenze (FI)
Italia
Tel: 800 930 872 (toll free)
Fax: 8000 452 6445
Email: imo-it@imopc.com
Web: www.imopc.it

IMO Automation LLC
101 Colony Park Drive, Suite 300
Cumming
Georgia 30040
USA
Tel: 404 476 8810
Fax: 404 476 8811
Email: imo-usa@imopc.com
Web: www.imoautomation.com

IMO South Pacific Pty Ltd
1/6 Dillington Pass
Landsdale
Perth WA 6065
Australia
Tel: 08 9302 5246 (local)
Fax: 08 9303 9908
Email: sales@imopacific.com.au
Web: www.imopacific.com.au